Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing
نویسندگان
چکیده
Approximate stream processing algorithms, such as Count-Min sketch, Space-Saving, etc., support numerous applications in databases, storage systems, networking, and other domains. However, the unbalanced distribution in real data streams poses great challenges to existing algorithms. To enhance these algorithms, we propose a meta-framework, called Cold Filter (CF), that enables faster and more accurate stream processing. Different from existing filters that mainly focus on hot items, our filter captures cold items in the first stage, and hot items in the second stage. Also, existing filters require two-direction communication – with frequent exchanges between the two stages; our filter on the other hand is one-direction – each item enters one stage at most once. Our filter can accurately estimate both cold and hot items, giving it a genericity that makes it applicable to many stream processing tasks. To illustrate the benefits of our filter, we deploy it on three typical stream processing tasks and experimental results show speed improvements of up to 4.7 times, and accuracy improvements of up to 51 times. All source code is made publicly available at Github [1].
منابع مشابه
SLD Revolution: A Cheaper, Faster yet more Accurate Streaming Linked Data Framework
RDF Stream Processing (RSP) is gaining momentum. The RDF stream data model is progressively adopted and many SPARQL extensions for continuous querying are converging into a unified RSP query language. However, the RSP community still has to investigate when transforming data streams in RDF streams pays off. In this paper, we report on several experiments on a revolutionized version of our Strea...
متن کاملA New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)
Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...
متن کاملFast Reconstruction of SAR Images with Phase Error Using Sparse Representation
In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...
متن کاملNumerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملReal time estimation of human visual attention with MCMC-based particle filter
This report proposes a new method for achieving a precise estimation of human visual attention with considerably less execution time. The main contribution of this report is the incorporation of a particle filter with Markov chain Monte-Carlo (MCMC) sampling into a previously proposed stochastic model of saliency-based human visual attention. This enables us to introduce stream processing with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017